Skip to contents

Fits a sample selection model based on the Skew-Normal distribution using Maximum Likelihood Estimation (MLE). This model allows for asymmetry in the distribution of the outcome variable's error term, addressing potential skewness.

Usage

HeckmanSK(
  selection,
  outcome,
  data = sys.frame(sys.parent()),
  lambda,
  start = NULL
)

Arguments

selection

A formula specifying the selection equation.

outcome

A formula specifying the outcome equation.

data

A data frame containing the variables.

lambda

Initial start value for the skewness parameter (lambda).

start

Optional numeric vector of initial parameter values.

Value

A list containing:

  • coefficients: Named vector of estimated model parameters.

  • value: The (negative) log-likelihood at convergence.

  • loglik: The maximum log-likelihood.

  • counts: Number of gradient evaluations.

  • hessian: Hessian matrix at the optimum.

  • fisher_infoSK: Approximate Fisher information matrix.

  • prop_sigmaSK: Standard errors for the estimates.

  • level: Levels of the selection variable.

  • nObs: Number of observations.

  • nParam: Number of model parameters.

  • N0: Number of censored (unobserved) observations.

  • N1: Number of observed (uncensored) observations.

  • NXS: Number of covariates in the selection equation.

  • NXO: Number of covariates in the outcome equation.

  • df: Degrees of freedom (observations minus parameters).

  • aic: Akaike Information Criterion.

  • bic: Bayesian Information Criterion.

  • initial.value: Initial parameter values used.

Details

The function implements MLE for a sample selection model where the outcome equation's errors follow a Skew-Normal distribution, as proposed in Ogundimu and Hutton (2016) . The optimization is performed via the BFGS algorithm.

The results include estimates for:

  • Selection equation coefficients.

  • Outcome equation coefficients.

  • Standard deviation of the error term (sigma).

  • Correlation between the selection and outcome errors (rho).

  • Skewness parameter (lambda).

  • Robust standard errors from the Fisher information matrix.

References

Emmanuel O Ogundimu, Jane L Hutton (2016). “A Sample Selection Model with Skew-normal Distribution.” Scandinavian Journal of Statistics, 43(1), 172–190.

Examples

data("Mroz87")
attach(Mroz87)
#> The following objects are masked from MEPS2001 (pos = 3):
#> 
#>     age, educ
#> The following objects are masked from MEPS2001 (pos = 4):
#> 
#>     age, educ
#> The following objects are masked from MEPS2001 (pos = 5):
#> 
#>     age, educ
selectEq <- lfp ~ huswage + kids5 + mtr + fatheduc + educ + city
outcomeEq <- log(wage) ~ educ + city
HeckmanSK(selectEq, outcomeEq, data = Mroz87, lambda = -1.5)
#> Start not provided using default start values.
#> $coefficients
#> (Intercept)     huswage       kids5         mtr    fatheduc        educ 
#>  2.91662397 -0.09441349 -0.38395436 -5.13417100 -0.01560489  0.09497449 
#>        city (Intercept)        educ        city       sigma         rho 
#> -0.04295576  1.10262877  0.07462305  0.11951616  0.96402482 -0.79175493 
#>      lambda 
#> -1.58728652 
#> 
#> $value
#> [1] -874.6076
#> 
#> $loglik
#> [1] -874.6076
#> 
#> $counts
#> gradient 
#>       47 
#> 
#> $hessian
#>             [,1]        [,2]        [,3]        [,4]        [,5]         [,6]
#>  [1,]  -761.7616  -5697.7338  -174.90498  -518.25799  -6631.3240   -9260.0083
#>  [2,] -5697.7338 -54421.2862 -1333.95430 -3704.44564 -51487.4053  -71513.9632
#>  [3,]  -174.9050  -1333.9543  -233.90244  -120.46746  -1668.4387   -2284.7332
#>  [4,]  -518.2580  -3704.4456  -120.46746  -357.14648  -4464.8672   -6250.0362
#>  [5,] -6631.3240 -51487.4053 -1668.43866 -4464.86724 -67197.2067  -83188.1359
#>  [6,] -9260.0083 -71513.9632 -2284.73322 -6250.03625 -83188.1359 -116455.8347
#>  [7,]  -486.7713  -4141.7774  -107.87398  -323.36488  -4444.5593   -6065.8973
#>  [8,]  -382.2667  -2819.7008   -72.26997  -258.59364  -3357.1481   -4694.1549
#>  [9,] -4694.1532 -35735.3046  -969.70450 -3150.92533 -42431.0844  -59706.1578
#> [10,]  -242.6706  -2039.7765   -46.11459  -159.97496  -2255.0939   -3058.9824
#> [11,]   277.3505   1966.9865    58.74978   192.71995   2449.5816    3308.3822
#> [12,]   292.7946   1745.9666   -31.66055   196.14271   2832.1353    3794.3060
#> [13,]    51.7407    391.4114    10.60834    34.91793    447.0649     634.4167
#>              [,7]         [,8]         [,9]       [,10]       [,11]       [,12]
#>  [1,]  -486.77126   -382.26666   -4694.1532  -242.67057   277.35053   292.79463
#>  [2,] -4141.77742  -2819.70084  -35735.3046 -2039.77647  1966.98655  1745.96663
#>  [3,]  -107.87398    -72.26997    -969.7045   -46.11459    58.74978   -31.66055
#>  [4,]  -323.36488   -258.59364   -3150.9253  -159.97496   192.71995   196.14271
#>  [5,] -4444.55930  -3357.14807  -42431.0844 -2255.09394  2449.58162  2832.13532
#>  [6,] -6065.89726  -4694.15492  -59706.1578 -3058.98238  3308.38218  3794.30602
#>  [7,]  -486.77126   -242.67057   -3058.9813  -242.67057   174.47566   176.34120
#>  [8,]  -242.67057  -1088.85633  -13745.6740  -694.14240   831.19533  -380.90115
#>  [9,] -3058.98133 -13745.67400 -179513.5549 -8967.45099 10269.04817 -4458.84151
#> [10,]  -242.67057   -694.14240   -8967.4510  -694.14240   526.04741  -253.74429
#> [11,]   174.47566    831.19533   10269.0482   526.04741 -1554.48298  -136.09970
#> [12,]   176.34120   -380.90115   -4458.8415  -253.74429  -136.09970 -1085.77412
#> [13,]    33.11873    -14.90048    -235.9433   -15.25629   -66.88540   -86.95696
#>            [,13]
#>  [1,]   51.74070
#>  [2,]  391.41142
#>  [3,]   10.60834
#>  [4,]   34.91793
#>  [5,]  447.06494
#>  [6,]  634.41668
#>  [7,]   33.11873
#>  [8,]  -14.90048
#>  [9,] -235.94334
#> [10,]  -15.25629
#> [11,]  -66.88540
#> [12,]  -86.95696
#> [13,]  -25.84295
#> 
#> $fisher_infoSK
#>                [,1]          [,2]          [,3]          [,4]          [,5]
#>  [1,]  0.5061487579 -8.327244e-03 -4.013654e-03 -0.5371120728 -3.428459e-04
#>  [2,] -0.0083272437  2.709240e-04  2.744186e-04  0.0097748699 -1.270217e-06
#>  [3,] -0.0040136544  2.744186e-04  7.226075e-03  0.0060250470 -8.051846e-05
#>  [4,] -0.5371120728  9.774870e-03  6.025047e-03  0.6309429661  3.486240e-04
#>  [5,] -0.0003428459 -1.270217e-06 -8.051846e-05  0.0003486240  1.324573e-04
#>  [6,] -0.0046989830 -5.475479e-05 -4.440042e-04  0.0010794756 -7.721135e-05
#>  [7,] -0.0008806198 -2.612742e-04  2.981766e-04 -0.0004362881 -7.500774e-05
#>  [8,] -0.0590758997  1.185436e-03  5.864600e-03  0.0482390049 -1.611029e-04
#>  [9,]  0.0029630290 -4.715956e-05 -2.337884e-04 -0.0019006473  1.038548e-05
#> [10,] -0.0020417580  6.424387e-05  1.887737e-04  0.0030487025 -1.476144e-05
#> [11,] -0.0126689099  3.348703e-04  1.542570e-03  0.0147815261 -7.961141e-06
#> [12,]  0.0178885748 -5.470207e-04 -2.748362e-03 -0.0206870705  6.553555e-05
#> [13,]  0.0182748108 -2.666511e-04 -7.861372e-04 -0.0212752130 -1.609516e-04
#>                [,6]          [,7]          [,8]          [,9]         [,10]
#>  [1,] -4.698983e-03 -8.806198e-04 -0.0590758997  2.963029e-03 -2.041758e-03
#>  [2,] -5.475479e-05 -2.612742e-04  0.0011854356 -4.715956e-05  6.424387e-05
#>  [3,] -4.440042e-04  2.981766e-04  0.0058646000 -2.337884e-04  1.887737e-04
#>  [4,]  1.079476e-03 -4.362881e-04  0.0482390049 -1.900647e-03  3.048703e-03
#>  [5,] -7.721135e-05 -7.500774e-05 -0.0001611029  1.038548e-05 -1.476144e-05
#>  [6,]  4.486229e-04 -1.006737e-04  0.0007568160 -9.218447e-05  6.042436e-05
#>  [7,] -1.006737e-04  7.830085e-03  0.0006403754  7.180597e-05 -2.509722e-03
#>  [8,]  7.568160e-04  6.403754e-04  0.0542936801 -3.354060e-03 -2.454182e-04
#>  [9,] -9.218447e-05  7.180597e-05 -0.0033540598  2.448635e-04 -1.889947e-04
#> [10,]  6.042436e-05 -2.509722e-03 -0.0002454182 -1.889947e-04  5.034535e-03
#> [11,] -1.997339e-04 -4.472223e-05  0.0062881286 -2.045755e-04  3.554003e-04
#> [12,]  2.856504e-04 -5.578512e-07 -0.0089234364  3.722263e-04 -3.574583e-04
#> [13,]  5.129161e-04  6.525616e-04 -0.0029103951 -3.504477e-04 -1.728526e-03
#>               [,11]         [,12]         [,13]
#>  [1,] -1.266891e-02  1.788857e-02  0.0182748108
#>  [2,]  3.348703e-04 -5.470207e-04 -0.0002666511
#>  [3,]  1.542570e-03 -2.748362e-03 -0.0007861372
#>  [4,]  1.478153e-02 -2.068707e-02 -0.0212752130
#>  [5,] -7.961141e-06  6.553555e-05 -0.0001609516
#>  [6,] -1.997339e-04  2.856504e-04  0.0005129161
#>  [7,] -4.472223e-05 -5.578512e-07  0.0006525616
#>  [8,]  6.288129e-03 -8.923436e-03 -0.0029103951
#>  [9,] -2.045755e-04  3.722263e-04 -0.0003504477
#> [10,]  3.554003e-04 -3.574583e-04 -0.0017285264
#> [11,]  2.866391e-03 -2.261126e-03 -0.0065637206
#> [12,] -2.261126e-03  4.370226e-03 -0.0002994573
#> [13,] -6.563721e-03 -2.994573e-04  0.0767131556
#> 
#> $prop_sigmaSK
#>  [1] 0.71144132 0.01645977 0.08500632 0.79431918 0.01150901 0.02118072
#>  [7] 0.08848777 0.23301004 0.01564811 0.07095446 0.05353869 0.06610769
#> [13] 0.27697140
#> 
#> $level
#> [1] "0" "1"
#> 
#> $nObs
#> [1] 753
#> 
#> $nParam
#> [1] 13
#> 
#> $N0
#> [1] 325
#> 
#> $N1
#> [1] 428
#> 
#> $NXS
#> [1] 7
#> 
#> $NXO
#> [1] 3
#> 
#> $df
#> [1] 740
#> 
#> $aic
#> [1] 1775.215
#> 
#> $bic
#> [1] 1835.328
#> 
#> $initial.value
#>  [1]  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  1.0  0.0 -1.5
#> 
#> attr(,"class")
#> [1] "HeckmanSK" "list"