Skip to contents

Fits the Heckman Sample Selection Model based on the Birnbaum-Saunders (BS) bivariate distribution. This function implements the maximum likelihood estimation of the model parameters.

Usage

HeckmanBS(selection, outcome, data = sys.frame(sys.parent()), start = NULL)

Arguments

selection

A formula object specifying the selection equation.

outcome

A formula object specifying the primary outcome equation.

data

A data frame containing the variables in the model.

start

An optional numeric vector of initial parameter values. If not provided, default values are used.

Value

A list containing:

  • coefficients: A named numeric vector of estimated model parameters.

  • value: The value of the likelihood function at the optimum.

  • loglik: The (negative) maximum log-likelihood.

  • counts: Number of gradient evaluations performed.

  • hessian: The Hessian matrix at the optimum.

  • fisher_infoBS: The (approximate) Fisher information matrix.

  • prop_sigmaBS: Approximate standard errors (square root of the Fisher information diagonal).

  • level: Levels of the selection variable.

  • nObs: Number of observations in the dataset.

  • nParam: Number of parameters estimated.

  • N0: Number of observations where the selection variable is zero.

  • N1: Number of observations where the selection variable is one.

  • NXS: Number of parameters in the selection equation.

  • NXO: Number of parameters in the outcome equation.

  • df: Degrees of freedom (observations minus number of parameters).

  • aic: Akaike Information Criterion.

  • bic: Bayesian Information Criterion.

  • initial.value: Initial values used in the optimization.

Details

The function estimates the parameters of the Heckman-BS model, which extends the classical Heckman model by assuming that the error terms follow a bivariate Birnbaum-Saunders distribution. The model has the same number of parameters as the classical Heckman model, including the correlation coefficient between the error terms. The optimization is performed using the optim function with the BFGS method.

The estimated quantities include:

  • Coefficients of the selection equation.

  • Coefficients of the outcome equation.

  • Estimated sigma (scale parameter of the outcome equation's error term).

  • Estimated rho (correlation coefficient between the error terms).

Additional outputs include measures of model fit, standard errors (approximated by the square root of the diagonal of the inverse Fisher information matrix), and diagnostic information.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

data(MEPS2001)
attach(MEPS2001)
#> The following objects are masked from MEPS2001 (pos = 3):
#> 
#>     age, age2, agefem, ambexp, blhisp, dambexp, dhospexp, educ,
#>     fairpoor, female, ffs, good, hospexp, income, ins, instype,
#>     instype_s1, lambexp, lnambx, totchr, vgood, year01
selectEq <- dambexp ~ age + female + educ + blhisp + totchr + ins + income
outcomeBS <- ambexp ~ age + female + educ + blhisp + totchr + ins
HeckmanBS(selectEq, outcomeBS, data = MEPS2001)
#> Start not provided using default start values.
#> $coefficients
#>  (Intercept)          age       female         educ       blhisp       totchr 
#>  0.117126176  0.089528907  0.721893635  0.068322795 -0.398979158  0.805603176 
#>          ins       income  (Intercept)          age       female         educ 
#>  0.179313173  0.003424215  5.778625015  0.246171408  0.410567060 -0.006632196 
#>       blhisp       totchr          ins        sigma          rho 
#> -0.215177445  0.588729014 -0.061373289  0.702817425  0.273068245 
#> 
#> $value
#> [1] -24470.39
#> 
#> $loglik
#> [1] -24470.39
#> 
#> $counts
#> gradient 
#>       91 
#> 
#> $hessian
#>                [,1]          [,2]          [,3]          [,4]         [,5]
#>  [1,]   -895.009884 -3.550012e+03   -408.999549 -1.183486e+04  -300.718621
#>  [2,]  -3550.011565 -1.520524e+04  -1646.323805 -4.692721e+04 -1134.499490
#>  [3,]   -408.999549 -1.646324e+03   -408.999549 -5.447084e+03  -142.565657
#>  [4,] -11834.858781 -4.692721e+04  -5447.084329 -1.623152e+05 -3715.857459
#>  [5,]   -300.718621 -1.134499e+03   -142.565657 -3.715857e+03  -300.718621
#>  [6,]   -234.111776 -9.873598e+02   -106.635438 -2.993922e+03   -75.816946
#>  [7,]   -317.585411 -1.350865e+03   -131.136107 -4.262440e+03   -88.156945
#>  [8,] -31728.648525 -1.301848e+05 -12713.578833 -4.410981e+05 -8859.892060
#>  [9,]    145.924642  5.747815e+02     65.178656  1.934746e+03    48.986520
#> [10,]    574.781763  2.440942e+03    251.551154  7.614507e+03   186.552689
#> [11,]     65.178656  2.515510e+02     65.178656  8.555283e+02    25.736540
#> [12,]   1934.756213  7.614543e+03    855.532205  2.664384e+04   611.162586
#> [13,]     48.986520  1.865526e+02     25.736540  6.111596e+02    48.986520
#> [14,]     35.498435  1.484328e+02     12.584880  4.477695e+02    13.898926
#> [15,]     50.738741  2.096702e+02     19.674590  6.877397e+02    16.122884
#> [16,]    131.443684  5.192263e+02     62.246427  1.737628e+03    42.807710
#> [17,]      5.113677  1.716742e+00     -3.824942 -2.799141e+00     8.905821
#>               [,6]          [,7]          [,8]         [,9]        [,10]
#>  [1,]  -234.111776   -317.585411   -31728.6485    145.92464     574.7818
#>  [2,]  -987.359839  -1350.865208  -130184.8492    574.78149    2440.9424
#>  [3,]  -106.635438   -131.136107   -12713.5788     65.17866     251.5512
#>  [4,] -2993.921687  -4262.439921  -441098.0691   1934.74613    7614.5074
#>  [5,]   -75.816946    -88.156945    -8859.8921     48.98652     186.5527
#>  [6,]  -285.789742    -65.989379    -7655.1211     35.49844     148.4327
#>  [7,]   -65.989379   -317.585411   -13078.1844     50.73874     209.6703
#>  [8,] -7655.121129 -13078.184395 -1738739.9843   5274.47436   21634.1102
#>  [9,]    35.498438     50.738741     5274.4744  -1887.69704   -7561.0060
#> [10,]   148.432731    209.670302    21634.1102  -7561.00604  -32512.6255
#> [11,]    12.584883     19.674590     1934.8759   -976.38929   -3804.9517
#> [12,]   447.767213    687.743499    73922.8274 -25852.59167 -103646.3745
#> [13,]    13.898927     16.122884     1432.0469   -528.70823   -2042.1809
#> [14,]    42.543843     10.926733     1198.5468   -846.89427   -3686.4378
#> [15,]    10.926734     50.738741     2212.4683   -652.90607   -2704.9276
#> [16,]    35.861194     43.436473     4910.8799  -1263.95022   -5075.3757
#> [17,]    -7.414801     -9.134665      218.0628   -260.28605    -986.3899
#>              [,11]        [,12]       [,13]        [,14]       [,15]
#>  [1,]     65.17866    1934.7562    48.98652     35.49844    50.73874
#>  [2,]    251.55105    7614.5427   186.55260    148.43279   209.67019
#>  [3,]     65.17866     855.5322    25.73654     12.58488    19.67459
#>  [4,]    855.52828   26643.8418   611.15959    447.76953   687.73971
#>  [5,]     25.73654     611.1626    48.98652     13.89893    16.12288
#>  [6,]     12.58488     447.7672    13.89893     42.54384    10.92673
#>  [7,]     19.67459     687.7435    16.12288     10.92673    50.73874
#>  [8,]   1934.87593   73922.8274  1432.04691   1198.54682  2212.46829
#>  [9,]   -976.38929  -25852.5917  -528.70823   -846.89427  -652.90607
#> [10,]  -3804.95173 -103646.3745 -2042.18095  -3686.43776 -2704.92756
#> [11,]   -976.38929  -13339.5378  -318.85109   -442.87054  -302.77836
#> [12,] -13339.53779 -365136.8394 -6961.77813 -11475.46978 -9231.40156
#> [13,]   -318.85109   -6961.7781  -528.70823   -245.24605  -171.67863
#> [14,]   -442.87054  -11475.4698  -245.24605  -1357.39475  -255.25468
#> [15,]   -302.77836   -9231.4016  -171.67863   -255.25468  -652.90607
#> [16,]   -665.72413  -17243.2391  -353.04104   -585.15576  -423.78847
#> [17,]    -98.65265   -3395.7003   -98.49486    -38.77638   -82.77576
#>              [,16]        [,17]
#>  [1,]    131.44368     5.113677
#>  [2,]    519.22626     1.716742
#>  [3,]     62.24643    -3.824942
#>  [4,]   1737.62795    -2.799141
#>  [5,]     42.80771     8.905821
#>  [6,]     35.86119    -7.414801
#>  [7,]     43.43647    -9.134665
#>  [8,]   4910.87987   218.062758
#>  [9,]  -1263.95022  -260.286051
#> [10,]  -5075.37570  -986.389880
#> [11,]   -665.72413   -98.652650
#> [12,] -17243.23915 -3395.700344
#> [13,]   -353.04104   -98.494864
#> [14,]   -585.15576   -38.776384
#> [15,]   -423.78847   -82.775760
#> [16,]  -3647.80131  -363.693684
#> [17,]   -363.69368  -130.466699
#> 
#> $fisher_infoBS
#>                [,1]          [,2]          [,3]          [,4]          [,5]
#>  [1,]  5.534926e-02 -4.023352e-03 -6.864132e-04 -2.808765e-03 -6.077958e-03
#>  [2,] -4.023352e-03  9.967468e-04 -2.052831e-04  4.298991e-05  2.404204e-04
#>  [3,] -6.864132e-04 -2.052831e-04  4.766100e-03 -1.044304e-04 -1.306809e-04
#>  [4,] -2.808765e-03  4.298991e-05 -1.044304e-04  2.157718e-04  2.266968e-04
#>  [5,] -6.077958e-03  2.404204e-04 -1.306809e-04  2.266968e-04  5.527934e-03
#>  [6,] -1.426000e-03 -2.868359e-04  8.322966e-05  7.287852e-05  1.468244e-04
#>  [7,] -3.740608e-04 -4.005195e-04  2.960627e-04  8.680324e-06  2.772719e-04
#>  [8,]  4.777251e-05 -7.479738e-06  1.752878e-05 -7.386793e-06  5.418551e-06
#>  [9,]  3.364262e-03 -2.446267e-04 -3.445002e-05 -1.436298e-04 -4.456176e-04
#> [10,] -2.534632e-04  7.588225e-05 -3.524420e-06 -3.377514e-06  2.098367e-05
#> [11,]  1.400008e-04 -1.259212e-05  3.376301e-04 -2.230163e-05 -5.046027e-06
#> [12,] -1.862532e-04 -1.577365e-06 -8.238448e-06  1.378892e-05  1.549357e-05
#> [13,] -5.889995e-04  2.782519e-05  4.640338e-07  2.752730e-05  4.480706e-04
#> [14,]  2.115490e-04 -3.506897e-05 -2.827026e-05 -1.373897e-05  1.567161e-05
#> [15,]  8.042176e-05 -3.177650e-05  2.576821e-05 -1.102744e-05  2.796917e-05
#> [16,] -1.686652e-04  8.641383e-06  1.697994e-05  1.220499e-05 -1.054191e-05
#> [17,]  2.716288e-03 -1.408322e-04 -1.733065e-04 -1.863814e-04  1.221995e-04
#>                [,6]          [,7]          [,8]          [,9]         [,10]
#>  [1,] -1.426000e-03 -3.740608e-04  4.777251e-05  3.364262e-03 -2.534632e-04
#>  [2,] -2.868359e-04 -4.005195e-04 -7.479738e-06 -2.446267e-04  7.588225e-05
#>  [3,]  8.322966e-05  2.960627e-04  1.752878e-05 -3.445002e-05 -3.524420e-06
#>  [4,]  7.287852e-05  8.680324e-06 -7.386793e-06 -1.436298e-04 -3.377514e-06
#>  [5,]  1.468244e-04  2.772719e-04  5.418551e-06 -4.456176e-04  2.098367e-05
#>  [6,]  4.652320e-03  5.117442e-04  3.428912e-06  2.265050e-04 -3.464038e-05
#>  [7,]  5.117442e-04  5.343976e-03 -1.105323e-05  3.662084e-04 -4.266037e-05
#>  [8,]  3.428912e-06 -1.105323e-05  2.045764e-06 -4.836152e-06  2.636505e-07
#>  [9,]  2.265050e-04  3.662084e-04 -4.836152e-06  2.981018e-02 -2.000531e-03
#> [10,] -3.464038e-05 -4.266037e-05  2.636505e-07 -2.000531e-03  4.903062e-04
#> [11,] -8.116291e-05 -4.769792e-05  8.040463e-07 -1.962548e-03  1.156402e-04
#> [12,] -6.691075e-06 -1.787170e-05  1.509578e-07 -1.381669e-03  2.312515e-06
#> [13,]  6.045397e-05  8.081019e-05 -8.903285e-07 -1.485707e-03  6.921204e-05
#> [14,]  1.269581e-04 -3.025650e-05  8.018626e-07 -5.000035e-04 -1.331624e-04
#> [15,]  3.271856e-05  3.959916e-04  4.971521e-07  2.184725e-04 -1.029810e-04
#> [16,]  3.986348e-05  5.040070e-05 -5.460869e-07  1.721848e-04 -1.847846e-05
#> [17,] -5.178742e-04 -7.821903e-04  1.054548e-05 -6.194990e-03  2.388018e-04
#>               [,11]         [,12]         [,13]         [,14]         [,15]
#>  [1,]  1.400008e-04 -1.862532e-04 -5.889995e-04  2.115490e-04  8.042176e-05
#>  [2,] -1.259212e-05 -1.577365e-06  2.782519e-05 -3.506897e-05 -3.177650e-05
#>  [3,]  3.376301e-04 -8.238448e-06  4.640338e-07 -2.827026e-05  2.576821e-05
#>  [4,] -2.230163e-05  1.378892e-05  2.752730e-05 -1.373897e-05 -1.102744e-05
#>  [5,] -5.046027e-06  1.549357e-05  4.480706e-04  1.567161e-05  2.796917e-05
#>  [6,] -8.116291e-05 -6.691075e-06  6.045397e-05  1.269581e-04  3.271856e-05
#>  [7,] -4.769792e-05 -1.787170e-05  8.081019e-05 -3.025650e-05  3.959916e-04
#>  [8,]  8.040463e-07  1.509578e-07 -8.903285e-07  8.018626e-07  4.971521e-07
#>  [9,] -1.962548e-03 -1.381669e-03 -1.485707e-03 -5.000035e-04  2.184725e-04
#> [10,]  1.156402e-04  2.312515e-06  6.921204e-05 -1.331624e-04 -1.029810e-04
#> [11,]  2.326648e-03  1.259946e-05 -3.308081e-04  7.376229e-05  1.690598e-04
#> [12,]  1.259946e-05  9.780675e-05  5.425888e-05  2.499726e-05 -5.986491e-05
#> [13,] -3.308081e-04  5.425888e-05  2.827185e-03 -1.175148e-04 -2.365084e-05
#> [14,]  7.376229e-05  2.499726e-05 -1.175148e-04  1.176385e-03  1.322124e-04
#> [15,]  1.690598e-04 -5.986491e-05 -2.365084e-05  1.322124e-04  2.461093e-03
#> [16,] -1.025723e-04 -1.199852e-05  7.270793e-05 -8.820452e-05 -2.812867e-06
#> [17,]  1.365177e-03  2.024267e-04 -1.011739e-03  1.205255e-03  1.733222e-04
#>               [,16]         [,17]
#>  [1,] -1.686652e-04  2.716288e-03
#>  [2,]  8.641383e-06 -1.408322e-04
#>  [3,]  1.697994e-05 -1.733065e-04
#>  [4,]  1.220499e-05 -1.863814e-04
#>  [5,] -1.054191e-05  1.221995e-04
#>  [6,]  3.986348e-05 -5.178742e-04
#>  [7,]  5.040070e-05 -7.821903e-04
#>  [8,] -5.460869e-07  1.054548e-05
#>  [9,]  1.721848e-04 -6.194990e-03
#> [10,] -1.847846e-05  2.388018e-04
#> [11,] -1.025723e-04  1.365177e-03
#> [12,] -1.199852e-05  2.024267e-04
#> [13,]  7.270793e-05 -1.011739e-03
#> [14,] -8.820452e-05  1.205255e-03
#> [15,] -2.812867e-06  1.733222e-04
#> [16,]  4.293894e-04 -1.052515e-03
#> [17,] -1.052515e-03  1.537118e-02
#> 
#> $prop_sigmaBS
#>  [1] 0.235264236 0.031571297 0.069036945 0.014689173 0.074350075 0.068207921
#>  [7] 0.073102502 0.001430302 0.172656248 0.022142860 0.048235341 0.009889729
#> [13] 0.053171276 0.034298468 0.049609405 0.020721712 0.114735777
#> 
#> $level
#> [1] "0" "1"
#> 
#> $nObs
#> [1] 3328
#> 
#> $nParam
#> [1] 17
#> 
#> $N0
#> [1] 526
#> 
#> $N1
#> [1] 2802
#> 
#> $NXS
#> [1] 8
#> 
#> $NXO
#> [1] 7
#> 
#> $df
#> [1] 3311
#> 
#> $aic
#> [1] 48974.79
#> 
#> $bic
#> [1] 49078.66
#> 
#> $initial.value
#>  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
#> 
#> attr(,"class")
#> [1] "HeckmanBS"